【资料图】

1、去百度文库,查看完整内容> 内容来自用户:机械人先生 卡方检验是基于卡方分布的一种检验方法,属于非参数检验,它统计样本的实际观测值与理论推断值之间的偏离程度,以此计算统计量χ2,χ2越大,二者偏差越大;卡方值越小,二者偏差越小,若两个值完全相等时,χ2值就为0,表明实测值与理论值完全吻合。

2、很多文献资料中都注明卡方检验适用于分类变量,而一提到分类变量的分析,卡方检验也是首先考虑的分析方法之一,这可能会给人一种感觉是卡方检验只适用于分类变量、计数资料。

3、其实不是,卡方检验也是可以用于连续资料的,我们可从以下两个方面考虑:1.根据卡方分布的概率密度函数可知卡方分布的函数曲线形状依赖于自由度,随着自由度增大,曲线越来越趋于正态分布曲线,正态分布是我们熟知的连续分布,而自由度对应分类变量的类别数,抛开取值范围不谈,当一个分类变量的类别无限大时,它其实也就类似于连续变量了。

4、其他的连续分布如t分布、F分布也和卡方分布有关,如F分布是由两个卡方分布构成、t分布是由一个正态分布和一个卡方分布构成。

5、2.原假设总体X的分布函数为F(x),如果总体分布为离散型,也就是分类变量,则原假设换为:总体X的分布律为P{X=xi=pi,i=1,2,...,现将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak),其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值。

本文到此分享完毕,希望对大家有所帮助。

推荐内容